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The Absolute-Log Method of Quantifying Relative Competitive Ability
and Niche Differentiation1

MICHAEL F. CARPINELLI2

Abstract: Plant competition studies designed to quantify interference between species provide valu-
able information on competitive interactions and on the effects of agronomic practices on those
interactions. The effect of each species’ density on the growth of itself and on the growth of the
other species is quantified in a series of regression models. Traditionally, the models’ regression
coefficients have been combined in a series of ratios to quantify relative competitive ability and
niche differentiation. Coefficients that are negative (positive interference—facilitation, mutualism) or
zero (neutral interference or nonsignificant coefficient) do not lend themselves well to ratio-based
methodology because of sign cancellation or undefined values, respectively. As a result, ratio-based
methodology is limited to using only positive coefficients (negative interference—amensalism, com-
petition). Rather than using ratios, the absolute-log method uses addition and subtraction of coeffi-
cients converted to a pseudologarithmic scale, thus allowing for use of coefficients with values that
are negative or zero. As a result, the absolute-log method can be used to quantify relative competitive
ability and niche differentiation involving all types of interference—negative, positive, and neutral.
The absolute-log method includes an optional statistical procedure constructing confidence intervals
for the estimates of relative competitive ability and niche differentiation.
Additional index words: Interference, competition, amensalism, facilitation, mutualism, Spitters,
reciprocal yield law.
Abbreviations: A-A, absolute-antilog; AND, absolute-antilog function corollary to ND; ARC, ab-
solute-antilog function corollary to RC; CI, confidence interval; LND, absolute-log method corollary
to ND; LRC, absolute-log method corollary to RC; ND, niche differentiation value; RC, relative
competitive ability value; SE, standard error.

INTRODUCTION

Plant competition studies designed to quantify inter-
ference between species provide valuable information to
those studying crop–weed interactions. Such studies may
also aid revegetation specialists selecting desirable spe-
cies to compete with a particular weed species or testing
the effect of a management action (e.g., fertilization) on
the competitive balance between a weed and a desirable
species. Several experimental designs attempt to quantify
intra- and interspecific interference between plant spe-
cies. Although they were initially developed to assess
the effect of weeds on crops, they can be used to quan-
tify interference among any species. In one such design,
the addition series, densities and proportions of different
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species are systematically varied, and the combined ef-
fect on the average weight per plant of each species is
quantified.

Analysis of the addition series requires expanding the
reciprocal yield law equation to model yield-density re-
sponses of two-species systems (Spitters 1983):

21w 5 b 1 b N 1 b N ,a 0a aa a ab b [1]

where wa is the mean weight per plant of species a, Na

and Nb are the neighbor densities of species a and b,
respectively, and b0a, baa, and bab are regression coeffi-
cients. The regression coefficients are interpreted as

5 the yield or weight of an isolated plant of spe-21b0a

cies a, baa is the intraspecific competition coefficient for
species a, and bab is the interspecific competition coef-
ficient, or the effect of species b on the yield of species
a. A similar equation can be written for species b:

21w 5 b 1 b N 1 b N ,b 0b bb b ba a [2]

where wb is the mean weight per plant of species b, Nb

and Na are the neighbor densities of species b and a,
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respectively, and b0b, bbb, and bba are regression coeffi-
cients. The regression coefficients are interpreted as

5 the yield or weight of an isolated plant of species21b0b

b, bbb is the intraspecific competition coefficient for spe-
cies b, and bba is the interspecific competition coefficient,
or the effect of species a on the yield of species b.

These models are fit with multiple linear regression,
and the coefficient estimates are used to interpret inter-
ference relationships between species. Using the Spitters
method (1983), the relative competitive ability value
(RC) of each species is

RC 5 b /b and RC 5 b /b .a aa ab b bb ba [3]

If, for example, baa is three times greater than bab, RCa

5 3, meaning that one plant of species a and three plants
of species b have an equal influence on the average
weight per plant of species a.

The Spitters method (1983) calculates the niche dif-
ferentiation value (ND) from the RC of each species:

ND 5 (b /b )/(b /b ) 5 RC · RCab aa ab ba bb a b

5 (b /b ) · (b /b ).aa ab bb ba [4]

Niche differentiation increases as ND departs from
unity; that is, species a and b are decreasingly limited
by the same resources (Spitters 1983). This interpretation
assumes that both species have equal resource-utilization
efficiency.

Positive interference (one-way 5 facilitation, two-way
5 mutualism) among plants is well documented (Bert-
ness and Callaway 1994; Caldwell et al. 1998; Carpinelli
et al. 2004; Choler et al. 2001; Hunter and Aarssen 1988;
Mangold 2004; Pugnaire and Haase 1996; Wilson and
Agnew 1992). In Equations 1 and 2, positive interference
produces a negative competition coefficient. The Spitters
method of quantifying relative competitive ability and
niche differentiation is not appropriate where one or
more competition coefficients are negative. This is be-
cause the association between a competition coefficient
and its sign (1 or 2) is lost in the forming of ratios.
Two species exhibiting positive interference on each oth-
er produce a negative/negative ratio of competition co-
efficients and a positive RC. Conversely, two species ex-
hibiting negative interference (one-way 5 amensalism,
two-way 5 competition; positive competition coeffi-
cients) also produce a positive RC. That is, where both
RCs are negative, a positive ND results—indistinguish-
able from a positive ND produced from two positive
RCs.

The Spitters method is also inappropriate where one
of the competition coefficients is zero or is not a statis-

tically significant component of the regression model.
Previously, where a competition coefficient was not sta-
tistically significant, it was assigned the value of zero
(Jacobs et al. 1996; Mangold 2004; Roush 1988; Sheley
and Larson 1994, 1996). Where the ratio of competition
coefficients comprising an RC contains a zero in the nu-
merator, the RC is zero, and the value of the denominator
is moot. Where the competition coefficient in the denom-
inator is zero, RC is undefined. In the past, researchers
substituted an arbitrary, very small, competition coeffi-
cient value (i.e., 0.0001) for zero, so as to avoid an un-
defined RC, oftentimes producing RCs orders of mag-
nitude greater than corresponding nonzero competition
coefficients (Jacobs et al. 1996; Mangold 2004; Roush
1988; Sheley and Larson 1994, 1996).

The absolute-log method, introduced here, conserves
the quantity and quality of interference while calculating
values of relative competitive ability and niche differ-
entiation and does not create moot or undefined values
where one of the competition coefficients is zero. The
absolute-log method also includes an optional statistical
procedure constructing confidence intervals around val-
ues of relative competitive ability and niche differenti-
ation by incorporating the variability associated with
each competition coefficient estimate in subsequent cal-
culations.

METHODS

Method Development. The first step in avoiding can-
celing of signs is to replace multiplication and division
in RC and ND calculations with addition and subtraction,
respectively, of the log10 of the competition coefficients.
However, the log10 of a number #0 is undefined, and
positive numbers between 0 and 1 have negative log10

values. To overcome this, the absolute-log function con-
verts a competition coefficient (b) to a pseudologarithm-
ic corollary, or Lb. All positive competition coefficients
have positive Lbs, even those between 0 and 1, and all
negative competition coefficients have negative Lbs. As
a result, the association between a competition coeffi-
cient and its sign is maintained during subsequent cal-
culations of addition and subtraction.

Note that the logarithm of 1 is 0, and the logarithm
of a number between 0 and 1 is negative. Also, doubling
any number greater than 0 increases its logarithm by
0.301 (log102). To create a scale of positive, logarithm-
based corollaries for competition coefficients $1, one
could simply add 1 to the competition coefficient and
take the logarithm. But adding 1 before taking the log-
arithm distorts this relationship between increasing num-
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Table 1. Competition coefficients are rescaled by dividing by the absolute
value of the nonzero competition coefficient of smallest magnitude. In this
case, all competition coefficients are divided by z20.2z. The absolute-log func-
tion (Equations 5–7) is applied after rescaling.

Competition
coefficient (b) Rescaled coefficient (bR) Absolute-log (Lb)

20.2
0.5
2
0

21
2.5
10
0

21
1.398

2
0

Figure 1. Plot of Lb as a function of the rescaled competition coefficient (bR).
Where bR # 21, Lb 5 (21 3 log zbRz)2 1; where bR 5 0, Lb 5 0; and
where bR $ 1, Lb 5 (log bR) 1 1.

Table 2. RC or ND values and their corresponding LRC or LND and ARC
or AND values.a

Parameter Value

RC or ND
LRC or LND
ARC or AND

1/3
20.477
23

1/2
20.301
22

1
0
0

2
0.301
2

3
0.477
3

a Abbreviations: AND, absolute-antilog function corollary to ND; ARC, ab-
solute-antilog function corollary to RC; LND, absolute-log method corollary
to ND; LRC, absolute-log method corollary to RC; ND, niche differentiation
value; RC, relative competitive ability value.

bers and their respective logarithms. However, this re-
lationship is maintained when taking the logarithms first,
then adding 1 to them. The corresponding procedure for
competition coefficients #21 requires taking the log of
the coefficient’s absolute value, multiplying it by 21 (to
restore the negative sign) and then subtracting 1. Com-
petition coefficients of 0 are assigned an Lb of 0. Treat-
ment of nonzero competition coefficients between 21
and 1 is addressed in the Rescaling section.

Rescaling. Because the logarithm of a number between
0 and 1 is negative, it is necessary to rescale competition
coefficients to maintain their signs (positive or negative).
Before the absolute-log function is applied, all compe-
tition coefficients (baa, bab, bbb, bba) from both models
(Equations 1 and 2) are divided by the absolute value of
the nonzero competition coefficient closest to zero
(smallest magnitude, regardless of sign) from both mod-
els. By doing so, the rescaled competition coefficients
(bR) that are nonzero have a magnitude of 1 or greater,
and competition coefficients of zero remain zero (Table
1). This step avoids the discontinuity between 21 and 1
(Figure 1) and maintains proportionality among compe-
tition coefficients while conserving their respective
signs.

The Absolute-Log Function. The absolute-log function,
expressed algebraically, is

Lb 5 (21· log zb z) 2 1, for b # 21; [5]R R

Lb 5 0, for b 5 0; and [6]R

Lb 5 (log b ) 1 1, for b $ 1. [7]R R

The RC and ND corollaries in the absolute-log meth-
od, LRC and LND, respectively, are calculated as fol-
lows:

LRCa 5 Lbaa 2 Lbab [8]

LRCb 5 Lbbb 2 Lbba [9]

LNDab 5 LRCa 1 LRCb. [10]

Interpreting Values of Relative Competitive Ability
and Niche Differentiation. Where intraspecific interfer-
ence equals interspecific interference, RC 5 1 and LRC
5 0; where intraspecific interference is greater than in-
terspecific interference, RC . 1 and LRC . 0; and
where interspecific interference is greater than intraspe-
cific interference, RC , 1 and LRC , 0. Where there
is complete niche overlap (no niche differentiation), ND
5 1 and LND 5 0, that is, niche differentiation increases
as ND diverges from 1 and as LND diverges from 0.

A logarithmic scale is not as intuitive as a linear scale
in interpreting the degree of relative competitive ability
or niche differentiation. For this reason, the absolute-
antilog (A-A) function is used to convert LRCs and
LNDs back to nonlogarithmic, base-10-scaled corollar-
ies, ARCs and ANDs, respectively, while conserving the
sign of their respective LRCs or LNDs:

zLx zAx 5 21·(10 ), for Lx # 2 1; [11]

Ax 5 0, for Lx 5 0; and [12]
LxAx 5 10 , for Lx $ 1, [13]

where Lx 5 LRC or LND and Ax 5 ARC or AND,
respectively.
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Table 3. Calculation of relative competitive ability and niche differentiation.
b is the competition coefficient from Spitters (1983) expanded reciprocal yield
law (Equations 1–4). In this example, ARCs and AND of the absolute-log
method are identical to RCs and ND, respectively, of the Spitters method.a

Spitters bR Absolute-log A-A

baa
bab
RCa 5 baa/bab
bbb
bba
RCb 5 bbb/bba
NDab 5 RCa · RCb

1.0
0.5
2.0
2.0
1.0
2.0
4.0

2
1

4
2

Lbaa
Lbab
LRCa 5 Lbaa 2 Lbab
Lbbb
Lbba
LRCb 5 Lbbb 2 Lbba
LNDab 5 LRCa 1 LRCb

1.301
1.000
0.301
1.602
1.301
0.301
0.602

ARCa

ARCb
ANDab

2.0

2.0
4.0

a Abbreviations: A-A, absolute-antilog; AND, absolute-antilog function cor-
ollary to ND; ARC, absolute-antilog function corollary to RC; LND, absolute-
log method corollary to ND; LRC, absolute-log method corollary to RC; ND,
niche differentiation value; RC relative competitive ability value.

Table 5. Calculation of relative competitive ability and niche differentiation
in a case where one or more of the competition coefficients are zero. The
value of bab is moot as RCa is 0, regardless of the value of the denominator.
RCb is undefined (*) because the denominator is 0.a

Spitters bR Absolute-log A-A

baa
bab
RCa
bbb
bba
RCb
NDab

0
3
0
6
0
*
*

2
1

4
2

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb
LNDab

0
1.000

21.000
1.301
0
1.301
0.301

ARCa

ARCb
ANDab

210

20
2

a Abbreviations: A-A, absolute-antilog; AND, absolute-antilog function cor-
ollary to ND; ARC, absolute-antilog function corollary to RC; LND, absolute-
log method corollary to ND; LRC, absolute-log method corollary to RC; ND,
niche differentiation value; RC relative competitive ability value.

Table 4. Scenario 2 is identical to Scenario 1 except that the strengths of interference are reversed for both competition coefficients in both models of relative
competitive ability. As a result, niche differentiation values reversed in both the Spitters method and the absolute-log method.

Scenario 1 Scenario 2

Spitters bR Absolute-log A-Aa Spitters bR Absolute-log A-A

baa
bab
RCa
bbb
bba
RCb
NDab

1.0
0.5
2.0
2.0
1.0
2.0
4.0

2
1

4
2

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb
LNDab

1.301
1.000
0.301
1.602
1.301
0.301
0.602

ARCa

ARCb
ANDab

2.0

2.0
4.0

baa
bab
RCa
bbb
bba
RCb
NDab

0.5
1.0
0.5
1.0
2.0
0.5
0.25

1
2

2
4

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb
LNDab

1.000
1.301

20.301
1.301
1.602

20.301
20.602

ARCa

ARCb
ANDab

22.0

22.0
24.0

a Abbreviations: A-A, absolute-antilog; AND, absolute-antilog function corollary to ND; ARC, absolute-antilog function corollary to RC; LND, absolute-log
method corollary to ND; LRC, absolute-log method corollary to RC; ND, niche differentiation value; RC relative competitive ability value.

As with LRCs and LNDs, where intraspecific inter-
ference is greater than interspecific interference, ARC .
0; where interspecific interference is greater than intra-
specific interference, ARC , 0; and where there is com-
plete niche overlap, AND 5 0 (Table 2). In the Spitters
method, RCs or NDs of equal magnitude and opposite
quality are reciprocals of each other. In the absolute-log
method, ARCs or ANDs of equal magnitude and oppo-
site quality have equal magnitude and opposite signs.
For example, where species a has twice the influence on
itself than species b has on species a, RCa 5 2 and
ARCa 5 2. Where species b has twice the influence on
species a than species a has on itself, RCa 5 1/2 and
ARCa 5 22. Also, where two pairs of species have NDs
of 3 and 1/3, they are equally niche differentiated; ANDs
of these same two pairs of species are 3 and 23, re-
spectively.

Method Comparison. Where all competition coeffi-
cients are positive and significant, the Spitters method
works well and is simpler than the absolute-log method.
In such a case, relative competitive ability and niche dif-
ferentiation have identical values in the Spitters method
(RC and ND) and the absolute-log method (ARC and
AND) (Table 3).

In a comparison of two scenarios that differ only in
that the strengths of interference of the competition co-
efficients are reversed (substituted for each other) in each
model of relative competitive ability, one would intui-
tively expect a niche differentiation value of similar
magnitude, but of opposite quality (reciprocals, Spitters;
opposite sign, absolute-log). This is true in the case
where all competition coefficients are positive (Table 4).
Again, both methods yield equivalent results, with the
Spitters method being simpler than the absolute-log
method.

In the Spitters method, where the numerator of RC is
0, the value of the denominator is moot—RC is 0 re-
gardless of the value of the denominator (Table 5). Even
more problematic is a situation where a denominator is
0 and RC and ND are undefined using the Spitters meth-
od (Table 5). As in previous studies (Jacobs et al. 1996;
Mangold 2004; Roush 1988; Sheley and Larson 1994,
1996), where a very small number is arbitrarily chosen
to substitute for a denominator of 0, the resulting RC
and ND are respectively and arbitrarily large (Table 6).
Because the absolute-log method adds and subtracts
pseudologarithmic corollaries, the value of the denomi-
nator is conserved and undefined values do not exist.
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Table 6. Calculation of relative competitive ability and niche differentiation
in a case where 0.0001 has been substituted for a competition coefficient of
0 in the denominator. RC and ND are dependent on the value of the substituted
coeffcient. In this case, ND differs from AND by more than three orders of
magnitude.a

Spitters bR Absolute-log A-A

baa
bab
RCa
bbb
bba
RCb
NDab

3.0
6.0
0.5
2.0
0 (0.0001)

20,000
10,000

1.5
3.0

1.0
0.0

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb
LNDab

1.176
1.477

20.301
1.000
0.000
1.000
0.699

ARCa

ARCb
ANDab

22

10
5

a Abbreviations: A-A, absolute-antilog; AND, absolute-antilog function cor-
ollary to ND; ARC, absolute-antilog function corollary to RC; LND, absolute-
log method corollary to ND; LRC, absolute-log method corollary to RC; ND,
niche differentiation value; RC relative competitive ability value.

Table 7. By reversing the signs for both competition coefficients in only one model, one would expect the niche differentiation value to change, as is the case
using the absolute-log method. Using the Spitters method, the signs cancel and ND is unchanged.a

Scenario 1 Scenario 2

Spitters bR Absolute-log A-A Spitters bR Absolute-log A-A

baa
bab
RCa
bbb
bba
RCb
NDab

5.0
7.0
0.714

21.0
23.0

0.333
0.238

5
7

21
23

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb
LNDab

1.699
1.845

20.146
21.000
21.477

0.477
0.331

ARCa

ARCb
ANDab

21.4

3.0
2.1

baa
bab
RCa
bbb
bba
RCb

NDab

5.0
7.0
0.714
1.0
3.0
0.333
0.238

5
7

1
3

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb

LNDab

1.699
1.845

20.146
1.000
1.477

20.477
20.623

ARCa

ARCb
ANDab

21.4

23.0
24.2

a Abbreviations: A-A, absolute-antilog; AND, absolute-antilog function corollary to ND; ARC, absolute-antilog function corollary to RC; LND, absolute-log
method corollary to ND; LRC, absolute-log method corollary to RC; ND, niche differentiation value; RC relative competitive ability value.

While some of the following scenarios represent atyp-
ical situations (e.g., positive interference in all cases),
they further demonstrate the universality of the absolute-
log method. Consider a case where some competition
coefficients are negative. In a comparison of two sce-
narios that differ in that the signs are reversed for both
competition coefficients in one model only, one would
expect the niche differentiation value to change, as is the
case using the absolute-log method (Table 7). Using the
Spitters method, ND remains unchanged. This is because
a negative/negative RC ratio and a positive/positive RC
ratio both produce a positive result. In a comparison of
two scenarios that differ in that strengths of interference
are reversed, as well as all signs, in each model, one
would intuitively expect the niche differentiation value
to remain unchanged. In such a case, AND does not
change, but in the Spitters method, the signs cancel and
ND changes (Table 8).

Statistical Analysis. Confidence intervals for values of
relative competitive ability and niche differentiation are
constructed by incorporating the variability associated
with the competition coefficients from Equations 1 and
2 into subsequent calculations of ARC and AND. The

distribution of each of these coefficients has a mean and
standard error (SE) associated with it. Assuming these
distributions are normal, the mean and SE of each co-
efficient is used to generate a population of coefficients
from which corresponding populations of Lbs, LRCs,
LNDs, ARCs, and ANDs are calculated—each with their
own mean and standard deviation, from which a confi-
dence interval (CI) can be constructed.

Constructing Confidence Intervals. For each compe-
tition coefficient from Equations 1 and 2 (baa, bab, bbb,
bba), create a large (e.g., 1,000) population of b values
by randomly selecting from a normal distribution with
mean and standard error equal to that of its respective b
value. The absolute-log function (Equations 5–7) is ap-
plied to these populations of b values (after rescaling),
creating corresponding populations of Lbs. From these
populations of Lbs, populations of LRCs (Equations 8
and 9), LNDs (Equation 10), ARCs, and ANDs (Equa-
tions 11–13) are derived. Where these populations are
normally distributed, confidence intervals are construct-
ed as follows:

CI 5 mean 6 Sx, [14]

where S 5 standard error of the mean and x 5 1.645,
1.960, or 2.576 for a 90, 95, or 99% CI, respectively.
Where these populations are not normally distributed,
confidence intervals are constructed using an appropriate
distribution or by employing distribution-free (nonpara-
metric) techniques.

Interpreting Confidence Intervals. Confidence inter-
vals may be used to determine if two species differ sig-
nificantly in niche (AND ± 0) or if one species is rel-
atively more competitive than the other (ARC ± 0). For
example, if the 95% CI for ANDab is 2.9 6 1.7, one
could say with 95% confidence that species a and b dif-
fer in niche because 0 (complete niche overlap) is not
contained in the CI of their AND. Conversely, if 0 were
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Table 8. After reversing the strengths and signs of both competition coefficients in both models, one would expect the ND value to remain unchanged, as is
the case using the absolute-log method. Using the Spitters method, the signs cancel and ND changes.a

Scenario 1 Scenario 2

Spitters bR Absolute-log A-A Spitters bR Absolute-log A-A

baa
bab
RCa
bbb
bba
RCb
NDab

3.0
6.0
0.5
2.0
4.0
0.5
0.25

1.5
3.0

1.0
2.0

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb
LNDab

1.176
1.477

20.301
1.000
1.301

20.301
20.602

ARCa

ARCb
ANDab

22.0

22.0
24.0

baa
bab
RCa
bbb
bba
RCb
NDab

26.0
23.0

2.0
24.0
22.0

2.0
4.0

23.0
21.5

22.0
21.0

Lbaa
Lbab
LRCa
Lbbb
Lbba
LRCb
LNDab

21.477
21.176
20.301
21.301
21.000
20.301
20.602

ARCa

ARCb
ANDab

22.0

22.0
24.0

a Abbreviations: A-A, absolute-antilog; AND, absolute-antilog function corollary to ND; ARC, absolute-antilog function corollary to RC; LND, absolute-log
method corollary to ND; LRC, absolute-log method corollary to RC; ND, niche differentiation value; RC relative competitive ability value.

contained in the 95% CI (e.g., 2.9 6 3.7), one could not
say with 95% confidence that the two species differ in
niche. In a comparison of the relative competitive abil-
ities of species a and b on species a, if the 95% CI of
ARCa 5 21.4 6 0.8, we could say with 95% confi-
dence that the interspecific interference of species b on
species a is greater than the intraspecific interference of
species a on itself (i.e., bab . baa) because 0 is not con-
tained in the CI of ARCa. Conversely, if the 95% CI of
ARCa 5 21.4 6 1.6, one could not say with 95% con-
fidence that the interspecific interference of species b on
species a is greater than the intraspecific interference of
species a on itself because 0 is contained in the CI of
ARCa.

Spreadsheet Application. A spreadsheet file is available
(author) which generates statistical analysis and graphi-
cal output for the absolute-log and Spitters methods. One
worksheet simultaneously calculates RCs and NDs (Spit-
ters method) and Lbs, LRCs, LNDs, ARCs, and ANDs
(absolute-log method), allowing the user to contrast and
compare different outcomes within and between the two
methods for various combinations of b values. As the
user creates competition coefficient populations using
the random number generator, a second worksheet au-
tomatically rescales baa, bab, bbb, and bba, applies the
absolute-log function (creating Lbaa, Lbab, Lbbb, and
Lbba, respectively), and calculates LRCs, LNDs, ARCs,
and ANDs, including 90%, 95%, and 99% confidence
intervals for each. A third worksheet calculates RCs and
NDs with confidence intervals; however, because of
problems associated with sign canceling and undefined
values, this should only be used when all values pro-
duced by the random number generator are . 0 (a value
# 0 is usually produced for any b . 0 if the SE is
approximately 0.3 times the mean or larger). The work-
sheet alerts the user if any value created by the random
number generator is # 0. A fourth worksheet contains
case studies with interpretation.

CONCLUSION

The elegance and simplicity of the Spitters method
make it the preferred approach to quantifying and inter-
preting relative competitive ability and niche differenti-
ation where all competition coefficients are positive and
statistically significant. In cases where a competition co-
efficient is negative, zero, or not statistically significant,
the absolute-log method should be used. For either meth-
od, the statistical analysis procedure outlined here allows
for a level of confidence to be assigned to values of
relative competitive ability and niche differentiation.

Understanding interference relationships of plant spe-
cies is essential in both theoretical and applied ecology.
Quantifying the relative competitive ability between spe-
cies under a variety of environmental conditions may
provide insight into the role of plant–plant interactions
in community dynamics. For example, a shift in the
competitive ability of one species vs. another resulting
from environmental change (e.g., climatic, hydrologic,
edaphic, etc.) may contribute to the crossing of a thresh-
old between relatively stable community states. This
may be especially true where keystone species and/or
invasive species are involved. Revegetation specialists
often strive to preempt resources from invasive species
through niche occupation and resource capture by desir-
able species. Knowledge of the relative competitive abil-
ities and niche differentiation among species, both de-
sirable and undesirable, is key to designing a diverse,
competitive, revegetation seeding mixture.
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